
A GIT Cheat Sheet from OnlineWebApplication.com 

Version control is a critical skill in modern software development, and Git is 
the most widely used version control system today. Whether you’re a 
beginner or an experienced developer, understanding Git commands and 
workflows can significantly improve your productivity and collaboration with 
other developers. This cheat sheet is designed to give you a 
comprehensive overview of essential Git commands, concepts, and best 
practices. By the end of this guide, you’ll have a handy reference to help 
you navigate through your Git workflows with ease. 

1. Getting Started with Git 

Installing Git 

Before you can use Git, you need to install it on your computer. Git is 
available for all major operating systems: 

• Windows: Download the installer from git-scm.com and follow the 
setup instructions. 

• macOS: Install Git via Homebrew with the command brew install git, or 
download the installer from git-scm.com. 

• Linux: Install Git using your distribution’s package manager. For 
example, on Ubuntu, run sudo apt-get install git. 

 

Configuring Git 

After installation, you should configure Git with your username and email, 
as these will be associated with your commits: 

git config --global user.name "Your Name" 

git config --global user.email "you@example.com" 

You can also set up other preferences, such as your default text editor: 

git config --global core.editor "nano" 

Understanding Repositories 

A Git repository is a directory that tracks changes in your project files. It 
contains all the information needed to manage the project’s history, 

https://onlinewebapplication.com/
https://git-scm.com/
https://git-scm.com/


including commits, branches, and tags. Repositories can be 
either local (on your machine) or remote (hosted on services like GitHub, 
GitLab, or Bitbucket). 

2. Basic Git Commands 

Initializing a Repository 

To start tracking a new project with Git, navigate to your project directory 
and run: 

git init 

This command creates a new .git directory that stores all the version control 
information. 

Cloning a Repository 

To clone an existing repository (copy it to your local machine), use: 

git clone <repository-url> 

For example: 

git clone https://github.com/username/repository.git 

Checking the Status 

To see the current state of your working directory and staging area, run: 

git status 

This command shows which files have been modified, staged for commit, 
or are untracked by Git. 

Adding and Committing Changes 

To add changes to the staging area, use: 

git add <file-name> 

Or, to add all changes: 



git add . 

Once your changes are staged, you can commit them to the repository: 

git commit -m "Your commit message" 

Viewing Commit History 

To view the history of commits, use: 

git log 

For a more concise and graphical view: 

git log --oneline --graph --all 

3. Branching and Merging 

Creating Branches 

Branches allow you to work on different features or fixes independently. To 
create a new branch, run: 

git branch <branch-name> 

Or, to create and switch to the new branch immediately: 

git checkout -b <branch-name> 

Switching Branches 

To switch to an existing branch, use: 

git checkout <branch-name> 

Merging Branches 

Once your work on a branch is complete, you can merge it back into the 
main branch (usually main or master): 

git checkout main 



git merge <branch-name> 

Resolving Merge Conflicts 

If two branches have changes in the same part of a file, Git will generate a 
conflict during the merge. To resolve conflicts, open the affected files and 
decide which changes to keep. After resolving, mark the conflicts as 
resolved: 

git add <resolved-file> 

git commit -m "Resolved merge conflict" 

4. Remote Repositories 

Adding a Remote Repository 

To link your local repository to a remote one, use: 

git remote add origin <remote-url> 

You can verify the remote with: 

git remote -v 

Pushing Changes 

To upload your local commits to the remote repository, use: 

git push origin <branch-name> 

If you’re pushing a new branch for the first time: 

git push -u origin <branch-name> 

Pulling Changes 

To update your local branch with changes from the remote repository, use: 

git pull origin <branch-name> 



Fetching Changes 

Fetching updates the local copy of the remote repository without merging 
the changes: 

git fetch origin 

Working with Multiple Remotes 

If you collaborate on a project with multiple repositories, you can add 
additional remotes: 

git remote add upstream <upstream-url> 

This is useful when working with forks. 

5. Advanced Git Commands 

Stashing Changes 

If you need to switch branches but have uncommitted changes, you can 
temporarily save them with: 

git stash 

To reapply the stashed changes later: 

git stash apply 

Reverting Changes 

To revert a specific commit (create a new commit that undoes the 
changes): 

git revert <commit-hash> 

Resetting Commits 

To undo commits without keeping a history (use with caution): 

git reset --hard <commit-hash> 



Rebasing Branches 

Rebasing allows you to move or combine commits from one branch onto 
another: 

git rebase <branch-name> 

Cherry-picking Commits 

Cherry-picking allows you to apply a commit from one branch to another: 

git cherry-pick <commit-hash> 

6. Git Workflows 

Git Flow 

Git Flow is a popular branching strategy for managing releases. It involves 
creating branches for new features, releases, and hotfixes. The main 
branches in Git Flow are main (for stable releases) and develop (for ongoing 
development). 

Forking Workflow 

This workflow is common in open-source projects. Developers fork the 
main repository, work on their copy, and then submit pull requests to merge 
their changes back into the original repository. 

Feature Branch Workflow 

The feature branch workflow involves creating a new branch for each 
feature or bug fix. Once the work is complete, the branch is merged back 
into the main branch. This keeps the main branch clean and stable. 

7. Best Practices and Tips 

Writing Good Commit Messages 

A good commit message should be concise and descriptive. It should 
explain what the change does and why it was made. A common format is: 

Short summary (50 characters or less) 



 

Detailed explanation, if necessary (72 characters per line) 

Avoiding Common Pitfalls 

• Avoid committing large files: Use .gitignore to exclude unnecessary 
files. 

• Don’t rewrite public history: Avoid using git rebase on shared 
branches. 

• Commit often: Make small, frequent commits to keep your work 
organized. 

 

Useful Aliases and Shortcuts 

You can create aliases for commonly used commands: 

git config --global alias.co checkout 

git config --global alias.br branch 

git config --global alias.ci commit 

git config --global alias.st status 

Keeping a Clean History 

To keep a clean history, consider using git rebase instead of git merge for 
simple changes, and use squash to combine multiple commits into one. 

8. Git Tools and Resources 

Git GUIs 

If you prefer a graphical interface over the command line, there are several 
Git GUIs available: 

• GitHub Desktop: Simplifies the Git workflow for GitHub users. 
• Sourcetree: A free Git client for Windows and macOS. 
• GitKraken: A cross-platform Git GUI with a focus on usability. 



Online Git Repositories 

Popular platforms for hosting Git repositories include: 

• GitHub: The largest Git hosting service, widely used for open-source 
and private projects. 

• GitLab: Offers built-in CI/CD, issue tracking, and more. 
• Bitbucket: Supports both Git and Mercurial, with a focus on teams. 

 

GitHub Actions and CI/CD 

GitHub Actions allows you to automate workflows directly from your GitHub 
repository. You can set up Continuous Integration/Continuous Deployment 
(CI/CD) pipelines to automatically test and deploy your code. 

Learning Resources 

To further enhance your Git skills, consider the following resources: 

• Pro Git (Book): A comprehensive guide to Git. 
• Git Documentation: The official Git documentation is thorough and 

detailed. 
• Online Courses: Platforms like Udemy, Coursera, and 

freeCodeCamp offer courses on Git. 

 

Conclusion 

This Git cheat sheet provides a comprehensive overview of the most 
commonly used Git commands and workflows. Whether you’re working on 
a solo project or collaborating with a team, mastering Git can help you 
manage your codebase efficiently and avoid common pitfalls. Keep this 
guide handy as you continue to work with Git, and remember that practice 
is key to becoming proficient with version control. 

Happy coding! 

 


	A GIT Cheat Sheet from OnlineWebApplication.com
	1. Getting Started with Git
	Installing Git
	Configuring Git
	Understanding Repositories

	2. Basic Git Commands
	Initializing a Repository
	Cloning a Repository
	Checking the Status
	Adding and Committing Changes
	Viewing Commit History

	3. Branching and Merging
	Creating Branches
	Switching Branches
	Merging Branches
	Resolving Merge Conflicts

	4. Remote Repositories
	Adding a Remote Repository
	Pushing Changes
	Pulling Changes
	Fetching Changes
	Working with Multiple Remotes

	5. Advanced Git Commands
	Stashing Changes
	Reverting Changes
	Resetting Commits
	Rebasing Branches
	Cherry-picking Commits

	6. Git Workflows
	Git Flow
	Forking Workflow
	Feature Branch Workflow

	7. Best Practices and Tips
	Writing Good Commit Messages
	Avoiding Common Pitfalls
	Useful Aliases and Shortcuts
	Keeping a Clean History

	8. Git Tools and Resources
	Git GUIs
	Online Git Repositories
	GitHub Actions and CI/CD
	Learning Resources

	Conclusion

